“the next great frontier in observational cosmology”

21-cm cosmology

Using radio telescopes to detect hydrogen emissions during a very early stage of the Cosmos before galaxies formed. Because the emissions were so old, the waves have stretched and are now 21 cm long.

The line is of great interest in big bang cosmology because it is the only known way to probe the “dark ages” from recombination to reionization. Including the redshift, this line will be observed at frequencies from 200 MHz to about 9 MHz on Earth. It potentially has two applications. First, by mapping redshifted 21 centimeter radiation it can, in principle, provide a very precise picture of the matter power spectrum in the period after recombination. Second, it can provide a picture of how the universe was reionized, as neutral hydrogen which has been ionized by radiation from stars or quasars will appear as holes in the 21 centimeter background.

However, 21 centimeter experiments are very difficult. Ground based experiments to observe the faint signal are plagued by interference from television transmitters and the ionosphere, so they must be very secluded and careful about eliminating interference if they are to succeed. Space based experiments, even on the far side of the moon (which should not receive interference from terrestrial radio signals), have been proposed to compensate for this. Little is known about other effects, such as synchrotron emission and free-free emission on the galaxy. Despite these problems, 21 centimeter observations, along with space-based gravity wave observations, are generally viewed as the next great frontier in observational cosmology, after the cosmic microwave background polarization.

source: http://en.wikipedia.org/wiki/Hydrogen_line#In_cosmology

More: “21-Centimeter Cosmology” –Birth of the Universe Found in an Atom of Hydrogen


Comments

Leave a Reply